TAC Forta M400A / M800A DIM119E

Forta M400A / M800A series Non-Spring Return linear actuators are design to mount directly onto globe valves with linkage kits ordered separately, M400A requires AV-811 linkage kit for mounting to VB-7xxx valves and the M800A requires AV-811 linkage kit for mounting to VB-7xxx or AV-812 for mounting to VB-9313-0-5-xx valves. Applications include chilled or hot water and steam. Field selectable input signals include reverse and direct acting, Floating or Proportional 0-10, 210 vdc or 4-20 ma with 500 ohm resistor (supplied) plus proportional sequencing input signal ranges.

FEATURES

- Floating configuration controlled by a SPDT floating controllers
- Proportional configuration 0-10, 2-10 vdc or 4-20 ma with the addition of a 500 ohm resistor included Direct/Reverse action switch selectable
- 90 lbf (400N) linear force
- 180 lbf (800N) linear force
- 24 Vac powered
- Die-cast housing with plenum rated plastic cover for NEMA 2 (IP54) applications
- Manual override to allow positioning of valve
- Electronic valve sequencing and Electronic flow curve (equal percentage or Linear) selection.
- Torque overload protection throughout stroke
- Easy "One Touch" input signal/stroke calibration

APPLICABLE LITERATURE

-Forta/VB-7xxx Selection Guide, F-27490

- Forta/VB-8xxx, VB-9xxx Selection Guide, F-27491
- AV-811 Linkage VB-7xxx, F-27442
- AV-812 Linkage VB-8xxx, VB-9xxx, F-27443
- AV-800 Series Linkage Adapters for Competitors Valves, F-27470

> TECHNICAL DATA, M400A / M800A

Model Chart								
Model	Power	Running VA	$\begin{gathered} \hline \text { Transformer } \\ \text { Size VA } \\ \hline \end{gathered}$	Floating Control	Proportional Control	Feedback	Force lbf	$\begin{aligned} & \text { 2-SPDT Aux } \\ & \text { Switch } \end{aligned}$
M400A	$\begin{gathered} 24 \mathrm{vac} \pm 10 \% \\ 50-60 \mathrm{~Hz} \end{gathered}$	6	30	Yes	$\begin{gathered} 0-10 \mathrm{vdc}, 2-10 \mathrm{vdc} \text { or } \\ 4-20 \mathrm{~mA}^{\star} \end{gathered}$	2-10vdc	90 (400 N)	No
M400A-S2								24vac 4a res
M800A		15	50				$180(800 \mathrm{~N})$	No
M800A-S2								24vac 4a res

* $4-20 \mathrm{~mA}$ with 500 ohm resistor

Stroke
Stroke Timing

Feedback AO
Power Supply Type
Motor Type
Enclosure

Sound Power Level

Agency Listings UL873, cULus, C-tick, CE
Floating 60 or 300 sec selectable Proportional 15 sec @ 1/2" stroke 2-10 vdc
Half Wave
Brushless DC
NEMA 2 (IP 54) with both conduit connectors used. NEMA 1 IP40 with one connector used.
max 32 dba

Ambient Temperature

Storage
Operational
$-13^{\circ} \mathrm{F}-+149^{\circ} \mathrm{F}\left(-25-+65^{\circ} \mathrm{C}\right)$ ambient $122{ }^{\circ} \mathrm{F}\left(50{ }^{\circ} \mathrm{C}\right)$ For Chilled water applications
$113{ }^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$ ambient at $281^{\circ} \mathrm{F}$ ($138^{\circ} \mathrm{C}$) Fluid temperature
$107^{\circ} \mathrm{F}\left(42{ }^{\circ} \mathrm{C}\right)$ ambient at $300^{\circ} \mathrm{F}$
(149 ${ }^{\circ} \mathrm{C}$) Fluid temperature
$100{ }^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$ ambient at $340^{\circ} \mathrm{F}$
$\left(171^{\circ} \mathrm{C}\right.$) Fluid temperature
$90^{\circ} \mathrm{F}\left(32^{\circ} \mathrm{C}\right)$ ambient at $366{ }^{\circ} \mathrm{F}$
($1866^{\circ} \mathrm{C}$) Fluid temperature
Min. Operating Temp. $\quad 14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$
Ambient Humidity $\quad 15$ to 95% RH non condensing
Materials
Housing Die-Cast Aluminum
Cover UL94 plenum rated plastic
Weight $\quad 3.96 \mathrm{lb}(1.8 \mathrm{~kg})$
Dimensions Figure 1

Figure 1
Dimensions: in. (mm)

FUNCTION

The actuator

The brushless DC-motor of the actuator turns a screw via a gear wheel. The motor receives a control signal from a controller. The screw gets a linear movement which moves the stem of the valve.

Control signal

M400A / M800A can be controlled by a SPDT floating control, Triac source controller or a proportional input signal.

Manual operation

There is a red manual operation handle on the actuator, see figure 2. When it is lowered, the motor stops. Then the actuator can be operated manually if the handle is turned.
ATTENTION: actuators is shipped with manual override lowered (MAN).

For normal operating, the handle must be raised (AUTO).

Position feedback

M400A / M800A actuators are equipped with a 2-10 vdc position feedback.

MOUNTING

The actuator may be mounted horizontally, vertically and in any position in between, but not upside down, see figure 3.

Forta M400A / M800A actuators mount directly on two and three way VB-7xxx globe valves using the AV-811 linkage kit.
The M800A may be mounted on VB-9313-0-5-xx valves using AV-812 linkage kit.
Either linkage kit must be ordered separately. Please refer to F-27442 for AV-811 mounting instructions and to F-27443 for AV-812 mounting instructions.

Figure 3

Block	Function	Description		
G	24 vac	power H		
power				
Al	+	input signal Cignal common		
D1	-	floating		Extend/
:---				
Retract*				
D2				

*Exact operation will very based on the settings of DIP switch \#1 and \#7

Caution: For floating input signals the cables between the controller and the Forta should not exceed 328' (100m) (16 AWG) with the cables connected to one actuator.

When installed with 3 conductors with very long lengths (floating control), where control signal reference is connected to G , the motor current of the actuator will cause varying voltage loss in the cable and thus in the reference level. Forta which has a highly sensitive control signal input, will detect the varying signal and follow it, which makes it difficult for the actuator to find a stable position.

Cable Lengths: The wires to G, H should be max of 328 ft (100m). min AWG 16, all other proportional input signal input wires should be a max of $656 \mathrm{ft}(200 \mathrm{~m}) \mathrm{min}$ AWG 20.

Please refer to the Wiring Examples for wiring instructions.

Provides 16VDC, 25 mA output source

Figure 6

Figure 7

*See note below!

	Function in the	
	"OFF" pos.	"ON" position
1	Retract	Extend (see sw7)
2	Proportional	Floating
3	-	Sequence
4	$0-10 \mathrm{~V}$	$2-10 \mathrm{~V}$
5	$0-5 \mathrm{~V}, 2-6 \mathrm{~V}$	$5-10 \mathrm{~V}, 6-10 \mathrm{~V}$
6	60 s	300 s
7	Normal	Inverted (see SW 1)
8	Normal	Linear/Logarithmic
9	Operation	Stroke position adjust (mom.)

4 Voltage range

You can choose whether to use the control signal voltage range $0-10 \mathrm{Vdc}$ (SW4 off) or 2-10Vdc (SW4 on).

5 Part of voltage range-

 0-5, 2-6 / 5-10, 6-10Allows you to select $0-5 / 2-6 \mathrm{v}$ or $5-10 / 6$ 10 v working range.

If SW 5 is OFF the $0-5 / 2-6 \mathrm{v}$ range is selected, If SW5 is ON the $5-10 / 6-10 \mathrm{v}$ is selected

Note switch 5 is only active if switch 2 is OFF and switch 3 is ON.

6

If switch 2 is ON SW6 controls run time, SW 6 OFF equals 60 sec , ON equals 300 sec run time.

7 Direction of movementNORM / INV

Changes the proportional or floating input signal to direct or reverse action similar to switch 1

Description

Valve closing screw direction
Control Mode
Sequence control
Input Voltage range
Part of voltage range
Running time (Floating control only)
Direction of movement
Valve characteristic
Input signal/stroke calibration
Figure 8

8 Linearization

SW 8 OFF normal
SW8 ON Linear electronic control
The motorized valve characteristics can be modified. If you wish for the characteristics to be affected, the setting LIN/LG will make the characteristics of an equally modified percentage (EQM) valve almost linear.

On the other hand, with LIN/LG setting a motorized valve equipped with a linear valve will operate with "Quick open characteristics."

Note! For the actuator to register new settings of the switches, the supply voltage must be removed by cutting power to the actuator or lowering the manual override lever, then change any of switches one through 8 as required and then restore power to the actuator or raise the manual override level.

Please refer to illustration on page 2, figure 2.

Note: After mounting the actuator on a valve, dipswitch 9 must be momentarily switched off to on to off with the actuator powered for proper actuator valve stroke calibration.

9 (OP/ADJ)

Input Signal/Stroke calibration SW9 OFF normal operation
This switch is only used to calibrate the input control signal and the valve stroke. To calibrate, power to the actuator must be on, momentarily turn switch 9 on and then off. The actuator will automatically match the control input signal to the valve stroke (switch 9 must be left in the off position for normal operation).

ACTUATOR VALVE SELECTION

Refer to the following selection guides for selection of the available Actuator Valve combinations VB-7xxx Selection Guide F-27490 or VB-8xxx/VB-9xxx Selection Guide F-27491 before using the tables on pages 7, 8 and 9

VB-72XX Two Way Globe Valve, Forta Proportional Control Setup Reference

Table 1							
VB-72xx 2 way valves			Forta M400A / M800A Base Proportional Configuration				
Valve Type	Program Switch Position					Desired Valve Operations	
Valve position at low signal input	Switch 1	Switch 2	Switch 7	Power up Position	Input Signal Action	Low end of signal input range	Feedback signal action
$\begin{aligned} & \text { VB-722x stem } \\ & \text { up closed } \\ & \hline \end{aligned}$	OFF	OFF	OFF	Retract No Flow	DA	Retract No Flow	2 vdc No Flow 10 vdc Full Flow
VB-722x stem down open	OFF	OFF	ON	Retract No Flow	RA	Extend Full Flow	10 vdc Full Flow 2 vdc No Flow
VB-722x stem up closed	ON	OFF	ON	Extend Full Flow	DA	Retract No Flow	10 vdc No Flow 2 vdc Full Flow
VB-722x stem down open	ON	OFF	OFF	Extend Full Flow	RA	Extend Full Flow	2 vdc Full Flow 10 vdc No Flow
VB-721x stem up open	ON	OFF	ON	Extend No Flow	RA	Retract Full Flow	10 vdc Full Flow 2 vdc No Flow
VB-721x stem down closed	ON	OFF	OFF	Extend No Flow	DA	Extend No Flow	2 vdc No Flow 10 vdc Full Flow
VB-721x stem up open	OFF	OFF	OFF	Retract Full Flow	RA	Retract Full Flow	2 vdc Full Flow 10 vdc No Flow
VB-721x stem down closed	OFF	OFF	ON	Retract Full Flow	DA	Extend No Flow	10 vdc No Flow 2 vdc Full Flow

Programming Note: The above switch positions are the base programming configurations, in the base configurations all other switches should be switched off. Once the base programming configuration has been set up you may wish to add additional program features and functions that are listed below.

DA $=$ Full open, full flow, 10 vdc output $/$ Full closed, no flow, 2 vdc output RA = Full open, full flow, 2vdc output / Full closed, no flow 10vdc output

VB-73XX Three Way Globe Valve, Proportional Control Setup Reference

Table 2						
VB-73x3 3 way valves			Forta M400A / M800A Base Proportional Configuration			
Valve Type	Program Switch Position				Desired Valve Operations	
Valve position at low signal input	Switch 1	Switch 2	Switch 7	Power up Position	Low end of signal input range	Feedback signal action @ port B
VB-731x stem up open B to AB	OFF	OFF	OFF	$\begin{array}{\|c\|} \hline \text { Retract Full Flow } \\ B \text { to } A B \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Retract Full Flow } \\ B \text { to } A B \\ \hline \end{array}$	2 vdc Full flow 10 vdc No flow
VB-731x stem down closed B to $A B$	OFF	OFF	ON	Retract Full Flow B to $A B$	$\begin{gathered} \text { Extend No Flow } \\ B \text { to } A B \end{gathered}$	10 vdc No flow 2 vdc Full flow
$\begin{aligned} & \text { VB-731x stem up } \\ & \text { open B to AB } \\ & \hline \end{aligned}$	ON	OFF	ON	$\begin{array}{\|c\|} \hline \text { Extend Full Flow } \\ A \text { to } A B \\ \hline \end{array}$	$\begin{gathered} \hline \text { Retract Full Flow } \\ B \text { to } A B \\ \hline \end{gathered}$	10 vdc Full flow 2 vdc No flow
VB-731x stem down closed B to AB	ON	OFF	OFF	Extend Full Flow A to $A B$	Extend No Flow B to AB	2 vdc No flow 10 vdc Full flow
VB-732x stem up flow B to $A B$	OFF	OFF	OFF	Retract Full Flow B to $A B$	Retract Full Flow B to $A B$	2 vdc Full flow 10 vdc No flow
VB-732x stem down flow B to A	OFF	OFF	ON	Retract Full Flow B to $A B$	Extend No Flow B to $A B$	10 vdc No flow 2 vdc Full flow
VB-732x stem up $\text { flow } B \text { to } A B$	ON	OFF	ON	$\begin{gathered} \text { Extend Full Flow } \\ \text { B to A } \\ \hline \end{gathered}$	$\begin{gathered} \text { Retract Full Flow } \\ B \text { to } A B \\ \hline \end{gathered}$	10 vdc Full flow 2 vdc No flow
VB-732x stem down flow B to A	ON	OFF	OFF	Extend Full Flow	Extend No Flow B to $A B$	2 vdc No flow 10 vdc Full flow

Programming Note: The above switch positions are the base programming configurations, in the base configurations all other switches should be switched off. Once the base programming configuration has been set up you may wish to add additional program features and functions that are listed below.

With the actuator powered and being controlled by the input signal the optional auxiliary switches only transfer contacts as follows, driving from full retract to full extend the auxiliary contacts transfer when the actuator is about 95% of full extend travel. When the actuator drives from full extend to full retract the contacts will transfer when the actuator is about 95% of full retract travel.

Table 3 Optional Auxiliary Switch Function (S2)					
Auxiliary Switches 2 - SPDT	Example A	Example B	Example C		e D
	Proportional Control				
	Program Switch 10ff Power Up Retracted	Program Switch 1on Power Up Extended	Program Switch 1off Power Up Retracted	Program Switch 1on Power Up Extended	
	Closed Open	Closed Open	Closed Open	Closed	Open
KC1 - K1	X	X	X	X	
KC1-K2	X	X	X		X
KC2-K3	X	X	X		X
KC2-K4	X	X	X	X	
Proportional Control Action	Program Switches 1 off, 7 off	Program Switches 1 on, 7 on	Program Switches 1 off, 7 on	Program	S 1 on,
Low Signal Input	Retracts	Retracts	Extends		
High Signal Input	Extends	Extends	Retracts		
Note: With power to the actuator off, Auxiliary Switches are made KC1 to K1 and KC2 to K3. Upon power up switches will make as shown above after auto start up calibration.					
Note: This table shows the auxiliary switch action based on the dip switch 1 and 7 settings. You should program the dip switches on the actuator based on the application requirements, once programmed review this chart to determine the action of the auxiliary switches and wire the switches accordingly. IF YOU CHANGE EITHER DIP SWITCH 1 or 7 TO GET A DIFFERENT CONTACT CLOSURE YOU WILL CHANGE THE EXTEND/RETEACT MOVEMENT OF THE ACTUATOR.					

VB-72XX Two Way Globe Valve, Forta Floating Control Setup Reference

Programming Note: The above switch positions are the base programming configurations, in the base configurations all other switches should be switched off. Once the base programming configuration has been set up you may wish to add additional program features and functions that are listed below.

DA = Full open, full flow, 10vdc output / Full closed, no flow, 2vdc output
RA = Full open, full flow, 2 vdc output / Full closed, no flow 10vdc output

VB-73XX Three Way Globe Valve, Forta Floating Control Setup Reference

Table 5								
VB-73x3 3 way valves			Forta M400A / M800A Base Floating Configuration					
Valve Type	Program Switch Position					Desired Valve Operations		
Valve position with D2 powered	Switch 1	Switch 2	Switch 7	Power up Position	Power to D2 input terminal	Feedback signal	Power to D1 input terminal	Feedback signal
VB-731x stem up open B to AB	OFF	ON	OFF	Retract Full Flow B to AB	Retract Full Flow B to $A B$	2 vdc	Extend No Flow B to AB	10 vdc
VB-731x stem down closed B to AB	OFF	ON	ON	Retract Full Flow B to AB	Extend No Flow B to $A B$	10 vdc	Retract Full Flow B to AB	2 vdc
$\begin{aligned} & \text { VB-731x stem up } \\ & \text { open } B \text { to } A B \end{aligned}$	ON	ON	OFF	Extend Full Flow A to AB	$\begin{gathered} \text { Extend No Flow } \\ B \text { to } A B \end{gathered}$	2 vdc	Retract Full Flow B to AB	10 vdc
VB-731x stem down closed B to AB	ON	ON	ON	Extend Full Flow A to AB	Retract Full Flow B to $A B$	10 vdc	Extend No Flow B to $A B$	2 vdc
VB-732x stem up flow B to AB	OFF	ON	OFF	Retract Full Flow B to AB	Retract Full Flow B to AB	2 vdc	Extend No Flow B to AB	10 vdc
VB-732x stem down flow B to A	OFF	ON	ON	Retract Full Flow B to AB	Extend No Flow B to $A B$	10 vdc	Retract Full Flow B to $A B$	2 vdc
VB-732x stem up flow B to $A B$	ON	ON	OFF	Extend Full Flow B to A	Extend No Flow B to $A B$	2 vdc	Retract Full Flow B to $A B$	10 vdc
VB-732x stem down flow B to A	ON	ON	ON	Extend Full Flow B to A	Retract Full Flow B to $A B$	10 vdc	Extend No Flow B to $A B$	2 vdc

Programming Notes: The above switch positions are the base programming configurations, in the base configurations all other switches should be switched off. Once the base programming configuration has been set up you may wish to add additional programming features and functions that are listed below.
Forta Floating Control Auxiliary Switch (Optional) Setup Reference

With the actuator powered and being controlled by the input signal the optional auxiliary switches only transfer contacts as follows, driving from full retract to full extend the auxiliary contacts transfer when the actuator is about 95% of full extend travel. When the actuator drives from full extend to full retract the contacts will transfer when the actuator is about 95% of full retract travel.

Mount actuator as shown and firmly tighten the U-clamp with a 13 mm wrench.
Remove cover and discard the shipping bubble wrap.

The switches on the circuit board should be set before the actuator is installed. There are no other switches or potentiometers that should be set or adjusted.

Actuator travel adjustment must be set as follows upon commissioning:

 Actuator and valve linked, manual override handle raised (AUTO), power on, move switch 9 (OP/ADJ) ON and then OFF.
MAINTENANCE

The actuator is maintenance-free.

Forta closes the valve and opens it fully. The adjustment is finished by the actuator closing the valve again; the electronic circuitry then adjusts the stroke. It also scales the actuator input signal, output feedback signal, and optional auxiliary switch outputs to match the valve's travel. The set values are stored in the EEPROM of the actuator so that they will remain after a loss of voltage.

When the end position adjustment is complete, the actuator starts to control the valve according to the control signal.

Note: Switch 9 (OP/ADJ) must be in the off position for normal operation.

ACCESSORIES

AV-811 VB-7xxx series globe valve linkage kit required for M400A and M800A actuator mounting. Order separately, F-27442.

AV-812 VB-9313 2-1/2" - 4" globe valve linkage kit required for M800A actuator mounting. Order separately, F-27443.

AV-800 series globe valve adapters (competitors valves). F-27470

FEDERAL COMMUNICATION COMMISSION (FCC)
Note: This equipment has been tested and found to comply with the limits for class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in residential installations. This equipment generates, uses, and can rediate radio frequency energy and may cause harmful interference if not installed and used in acordance with the instructions. Even when instructions are followed, there is no guarantee that interferance will not occur in a particular setting-Which can be determined by turning the equipment off and on-the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the seperation between the equipment and receiver
- Connect the equipment to an outlet on a circuit different form that to which the receiver is connected
- Consult the dealer or an experienced radio/television technician for help.

CANADIAN DEPARTMENT OF COMMUNICATIONS (DOC)
Note: This class B digital apparatus meets all requirements of the Canadian Interference Causing Equipment Regulations Cet apparel numenique de la classe respects toutes les exigences du reglement sur le material broilleur du Canada.

EUROPEAN STANDARD EN 55022
Warring: This is a class B digital (European Classification) product in a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

CAUTION: Avoid locations where excesive moisture, corrosive fumes, vibration, or explosive vapors are present.

TAC, 1354 Clifford Ave, PO BOX 2940, Loves Park Illinois 61132-2940

